Preauthorization is required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • Who are undergoing breast reconstruction</td>
<td>Interventions of interest are: • Allogeneic acellular dermal matrix products</td>
<td>Comparators of interest are: • Breast reconstruction without an acellular dermal matrix product</td>
<td>Relevant outcomes include: • Symptoms • Morbid events • Functional outcomes • Quality of life • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • Who are undergoing tendon repair</td>
<td>Interventions of interest are: • Graftjacket</td>
<td>Comparators of interest are: • Surgical repair alone</td>
<td>Relevant outcomes include: • Symptoms • Morbid events • Functional outcomes • Quality of life • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • Who are undergoing surgical repair of hernias or parastomal reinforcement</td>
<td>Interventions of interest are: • Acellular collagen-based scaffolds</td>
<td>Comparators of interest are: • Surgical repair alone • Standard surgical mesh</td>
<td>Relevant outcomes include: • Symptoms • Morbid events • Functional outcomes • Quality of life • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With diabetic lower-extremity ulcers</td>
<td>Interventions of interest are: • AlloPatch, Apligraf, Dermagraft, or Integra Dermal Regeneration Template</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Disease-specific survival • Symptoms • Change in disease status • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: • With diabetic lower-extremity ulcers</td>
<td>Interventions of interest are: • Acellular dermal matrix products other than AlloPatch, Apligraf, Dermagraft, or Integra Dermal Regeneration Template</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Disease-specific survival • Symptoms • Change in disease status • Morbid events • Quality of life</td>
</tr>
</tbody>
</table>
Description

Bioengineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), nonhuman tissue (xenographic), synthetic materials, or a composite of these materials. Bioengineered skin and soft tissue substitutes are being evaluated for a variety of conditions, including breast reconstruction and healing lower-extremity ulcers and severe burns. Acellular dermal matrix (ADM) products are also being evaluated for soft tissue repair.

Summary of Evidence

Acellular dermal matrix (ADM) products are also being evaluated for soft tissue repair.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With diabetic lower-extremity ulcers</td>
<td>Interventions of interest are: • Cryopreserved skin allograft</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Disease-specific survival • Symptoms • Change in disease status • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: • With diabetic lower-extremity ulcers</td>
<td>Interventions of interest are: • Xenogenic skin substitutes</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Disease-specific survival • Symptoms • Change in disease status • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: • With lower-extremity ulcers due to venous insufficiency</td>
<td>Interventions of interest are: • Apligraf and Oasis Wound Matrix</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Disease-specific survival • Symptoms • Change in disease status • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: • With lower-extremity ulcers due to venous insufficiency</td>
<td>Interventions of interest are: • Bioengineered skin substitutes other than Apligraf and Oasis Wound Matrix</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Disease-specific survival • Symptoms • Change in disease status • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: • With dystrophic epidermolysis bullosa</td>
<td>Interventions of interest are: • Bioengineered skin substitutes (i.e., OrCel)</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Disease-specific survival • Symptoms • Change in disease status • Morbid events • Quality of life</td>
</tr>
<tr>
<td>Individuals: • With deep dermal burns</td>
<td>Interventions of interest are: • Bioengineered skin substitutes (i.e., Epicel, Integra Dermal Regeneration Template)</td>
<td>Comparators of interest are: • Standard wound care</td>
<td>Relevant outcomes include: • Symptoms • Morbid events • Functional outcomes • Quality of life • Treatment-related morbidity</td>
</tr>
</tbody>
</table>
Breast Reconstruction

For individuals who are undergoing breast reconstruction who receive allogeneic ADM products, the evidence includes a randomized controlled trial (RCT) and systematic reviews. Relevant outcomes are symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. A recent systematic review found no difference in overall complication rates with ADM allograft compared to standard procedures for breast reconstruction. Reconstructions with ADM have been reported to have higher seroma, infection, and necrosis rates than reconstructions without ADM. However, capsular contracture and malposition of implants may be reduced. Thus, in cases where there is limited tissue coverage, including but not limited to when the use of ADM allows a single-stage reconstruction, the available evidence may be considered sufficient to permit conclusions about health outcomes that may inform patient decision making about reconstruction options. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Tendon Repair

For individuals who are undergoing tendon repair who receive Graftjacket ADM, the evidence includes one RCT. Relevant outcomes are symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. One RCT identified found improved outcomes with Graftjacket ADM allograft for rotator cuff repair. Although these results were positive, additional study with a larger number of patients is needed to evaluate consistency of the effect. The evidence is insufficient to determine the effects of the technology on health outcomes.

Surgical Repair of Hernias or Parastomal Reinforcement

For individuals who are undergoing surgical repair of hernias or parastomal reinforcement who receive acellular collagen-based scaffolds, the evidence includes RCTs. Relevant outcomes are symptoms, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Several comparative studies including RCTs have shown no difference in outcomes between tissue-engineered skin substitutes and either standard synthetic mesh or no reinforcement. The evidence is sufficient to determine that the technology is unlikely to improve the net health outcome.

Diabetic Lower-Extremity Ulcers

For individuals who have diabetic lower-extremity ulcers who receive AlloPatch, Apligraf, Dermagraft, or Integra Dermal Regeneration Template, the evidence includes RCTs. Relevant outcomes are disease-specific survival, symptoms, change in disease status, morbid events, and quality of life. RCTs have demonstrated the efficacy of AlloPatch (reticular ADM), Apligraf and Dermagraft (living cell therapy), and Integra Dermal Regeneration Template (biosynthetic) over the standard of care. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have diabetic lower-extremity ulcers who receive other ADM products, cryopreserved skin allograft, or xenogenic skin substitutes, the evidence includes RCTs. Relevant outcomes are disease-specific survival, symptoms, change in disease status, morbid events, and quality of life. Additional study with a larger number of subjects is needed to compare the effect of other human ADM products, cryopreserved skin allograft (TheraSkin) and xenogenic skin substitutes (e.g., Oasis Wound Matrix, PriMatrix) to the standard of care. The evidence is insufficient to determine the effects of the technology on health outcomes.

Lower-Extremity Ulcers due to Venous Insufficiency

For individuals who have lower-extremity ulcers due to venous insufficiency who receive Apligraf or Oasis Wound Matrix, the evidence includes RCTs. Relevant outcomes are disease-specific survival, symptoms, change in disease status, morbid events, and quality of life. RCTs have demonstrated the efficacy of Apligraf living cell therapy and xenogenic Oasis Wound Matrix over the standard of care. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.
For individuals who have lower-extremity ulcers due to venous insufficiency who receive bioengineered skin substitutes other than Apligraf or Oasis Wound Matrix, the evidence includes RCTs. Relevant outcomes are disease-specific survival, symptoms, change in disease status, morbid events, and quality of life. In a moderately large RCT, Dermagraft was not shown to be more effective than controls for the primary or secondary end points in the entire population and was only slightly more effective than controls (an 8%-15% increase in healing) in subgroups of patients with ulcer durations of 12 months or less or size of 10 cm or less. Additional study with a larger number of subjects is needed to evaluate the effect of the xenogenic PriMatrix skin substitute versus the current standard of care. The evidence is insufficient to determine the effects of the technology on health outcomes.

Dystrophic Epidermolysis Bullosa

For individuals who have dystrophic epidermolysis bullosa who receive OrCel, the evidence includes case series. Relevant outcomes are disease-specific survival, symptoms, change in disease status, morbid events, and quality of life. OrCel was approved under a humanitarian drug exemption for use in patients with dystrophic epidermolysis bullosa undergoing hand reconstruction surgery, to close and heal wounds created by the surgery, including those at donor sites. Outcomes have been reported in small series (e.g., five patients). The evidence is insufficient to determine the effects of the technology on health outcomes.

Deep Dermal Burns

For individuals who have deep dermal burns who receive bioengineered skin substitutes (i.e., Epicel, Integra Dermal Regeneration Template), the evidence includes RCTs. Relevant outcomes are symptoms, change in disease status, morbid events, functional outcomes, quality of life, and treatment-related morbidity. Overall, there are few skin substitutes approved, and the evidence is limited for each product. Epicel (living cell therapy) has received Food and Drug Administration approval under a humanitarian device exemption for the treatment of deep dermal or full-thickness burns comprising a total body surface area of 30% or more. Comparative studies have demonstrated improved outcomes for biosynthetic skin substitute Integra Dermal Regeneration Template for the treatment of burns. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Policy

Breast reconstructive surgery using allogeneic acellular dermal matrix products* (including each of the following: AlloDerm®, AlloMax™, AlloMend®, DermaMatrix™, FlexHD®, GraftJacket®; see Policy Guidelines) may be considered medically necessary,

- when there is insufficient tissue expander or implant coverage by the pectoralis major muscle and additional coverage is required,
- when there is viable but compromised or thin postmastectomy skin flaps that are at risk of dehiscence or necrosis, or
- the inframammary fold and lateral mammary folds have been undermined during mastectomy and re-establishment of these landmarks is needed.

Treatment of chronic, noninfected, full-thickness diabetic lower extremity ulcers using the following tissue-engineered skin substitutes may be considered medically necessary:

- AlloPatch®
- Apligraf®
- Dermagraft®
• Integra® Omnigraft Dermal Regeneration Matrix (also known as Omnigraft)

Treatment of chronic, noninfected, partial- or full-thickness lower extremity skin ulcers due to venous insufficiency, which have not adequately responded following a one-month period of conventional ulcer therapy, using the following tissue-engineered skin substitutes may be considered medically necessary:

• Apligraf™
• Oasis™ Wound Matrix™

Treatment of dystrophic epidermolysis bullosa using the following tissue-engineered skin substitutes may be considered medically necessary:

• OrCel™ (for the treatment of mitten-hand deformity when standard wound therapy has failed and when provided in accordance with the humanitarian device exemption [HDE] specifications of the U.S. Food and Drug Administration [FDA])****

Treatment of second- and third-degree burns using the following tissue-engineered skin substitutes may be considered medically necessary:

• Epicel® (for the treatment of deep dermal or full-thickness burns comprising a total body surface area of 30% or more when provided in accordance with the HDE specifications of the FDA)****

• Integra Dermal Regeneration Template™

*Banked Human Tissue

**FDA premarket approval

***FDA 510(k) cleared

****FDA-approved under HDE

All other uses of the bio-engineered skin and soft tissue substitutes listed above are considered investigational.

All other skin and soft tissue substitutes not listed above are considered investigational, including, but not limited to:

• ACell® UBM Hydralyophilized Wound Dressing
• AlloSkin™
• AlloSkin™ RT
• Aongen™ Collagen Matrix
• Architect® ECM, PX, FX
• ArthroFlex™ (FlexGraft)
• Atlas Wound Matrix
• Avagen Wound Dressing
• AxoGuard® Nerve Protector (AxoGen)
• CellerateRx® (CRXa™)
• CollaCare®
• CollaCare® Dental
• Collagen Wound Dressing (Oasis Research)
• CollaGUARD®
• CollaMend™
• CollaWound™
• Collexa®
• Collievea®
• Conexa™
• Coreleader Colla-Pad
• CorMatrix®
• Cymetra®
• Cytal™ (previously MatriStem®)
• Dermadapt™ Wound Dressing
• Dermapure™
• DermaSpan™
• DressSkin
• Durepair Regeneration Matrix®
• Endoform Dermal Template™
• ENDurAgen™
• Excellagen
• ExpressGraft™
• E-Z Derm™
• FlexiGraft®
• GammaGraft
• GraftJacket® Xpress, injectable
• Hyalomatrix®
• Hyalomatrix® PA
• hMatrix®
• Integra™ Flowable Wound Matrix
• Integra™ Bilayer Wound Matrix
• MariGen/Kerecis™ Omega3™
• MatriDerm®
• Matrix HD™
• Mediskin®
• MemoDerm™
• Microderm® biologic wound matrix
• NeoForm™
• NuCel
• Oasis® Burn Matrix
• Oasis® Wound Matrix
• Oasis® Ultra
• Pelvicol®/PelviSoft®
Bioengineered skin and soft tissue substitutes may be either acellular or cellular. Acellular products (e.g., dermis with cellular material removed) contain a matrix or scaffold composed of materials such as collagen, hyaluronic acid, and fibronectin. Acellular dermal matrix products can differ in a number of ways, including as species source (human, bovine, porcine), tissue source (e.g. dermis, pericardium, intestinal mucosa), additives (e.g. antibiotics, surfactants), hydration (wet, freeze dried), and required preparation (multiple rinses, rehydration).

Cellular products contain living cells such as fibroblasts and keratinocytes within a matrix. The cells contained within the matrix may be autologous, allogeneic, or derived from other species (e.g., bovine, porcine). Skin substitutes may also be composed of dermal cells, epidermal cells, or a combination of dermal and epidermal cells, and may provide growth factors to stimulate healing. Bioengineered skin substitutes can be used as either temporary or permanent wound coverings.

There are a large number of potential applications for artificial skin and soft tissue products. One large category is nonhealing wounds, which potentially encompasses diabetic neuropathic ulcers, vascular insufficiency ulcers, and pressure ulcers. A substantial minority of such wounds do not heal adequately with standard wound care, leading to prolonged morbidity and increased risk of mortality. For example, nonhealing lower-extremity

Policy Guidelines

Note: Amniotic membrane and amniotic fluid products are reviewed in the Amniotic Membrane and Amniotic Fluid Protocol.

Clinical input indicated that the various ADM products used in breast reconstruction have similar efficacy. The products listed are those that have been identified for use in breast reconstruction. Additional ADM products may become available for this indication.

Medicare Advantage

Porcine (pig) skin dressings

For Medicare Advantage porcine (pig) skin dressings may be medically necessary as an occlusive dressing for burns, donor sites of a homograft, and decubiti and other ulcers. The following are examples of products that are derived from porcine, and because FDA approval is integral to the uses they are deemed reasonable and necessary for, it should be considered:

- Oasis™ Wound Matrix
- Permacol™

Background

Bioengineered skin and soft tissue substitutes may be either acellular or cellular. Acellular products (e.g., dermis with cellular material removed) contain a matrix or scaffold composed of materials such as collagen, hyaluronic acid, and fibronectin. Acellular dermal matrix products can differ in a number of ways, including as species source (human, bovine, porcine), tissue source (e.g. dermis, pericardium, intestinal mucosa), additives (e.g. antibiotics, surfactants), hydration (wet, freeze dried), and required preparation (multiple rinses, rehydration).

Cellular products contain living cells such as fibroblasts and keratinocytes within a matrix. The cells contained within the matrix may be autologous, allogeneic, or derived from other species (e.g., bovine, porcine). Skin substitutes may also be composed of dermal cells, epidermal cells, or a combination of dermal and epidermal cells, and may provide growth factors to stimulate healing. Bioengineered skin substitutes can be used as either temporary or permanent wound coverings.

There are a large number of potential applications for artificial skin and soft tissue products. One large category is nonhealing wounds, which potentially encompasses diabetic neuropathic ulcers, vascular insufficiency ulcers, and pressure ulcers. A substantial minority of such wounds do not heal adequately with standard wound care, leading to prolonged morbidity and increased risk of mortality. For example, nonhealing lower-extremity
wounds represent an ongoing risk for infection, sepsis, limb amputation, and death. Bioengineered skin and soft tissue substitutes have the potential to improve rates of healing and reduce secondary complications.

The preferred outcomes for the healing of lower-extremity ulcers and burn wounds are the percentage of patients with complete wound healing and the time to complete wound healing. The percentage of patients with 50% wound healing and time to 50% wound healing have also been considered appropriate outcomes for these conditions. The percent change in wound area at four weeks is predictive of complete healing at 12 weeks in patients with diabetic foot ulcers. Thus, minimal improvement at 30 days can be considered as an indicator that a wound is unlikely to heal in patients with comorbidities known to affect wound healing.

Other situations in which bioengineered skin products might substitute for living skin grafts include certain post-surgical states (e.g., breast reconstruction) in which skin coverage is inadequate for the procedure performed, or for surgical wounds in patients with compromised ability to heal. Second- and third-degree burns are another indication in which artificial skin products may substitute for auto- or allografts. Certain primary dermatologic conditions that involve large areas of skin breakdown (e.g., bullous diseases) may also be conditions in which artificial skin products can be considered as substitutes for skin grafts. Acellular dermal matrix products are also being evaluated in the repair of other soft tissues including rotator cuff repair, following oral and facial surgery, hernias, and other conditions.

Regulatory Status

A large number of artificial skin products are commercially available or in development. The following summary of commercially available skin substitutes describes those products that have substantial relevant evidence on efficacy.

Acellular Dermal Matrix Products

Allograft ADM products derived from donated human skin tissue are supplied by tissue banks compliant with standards of the American Association of Tissue Banks (AATB) and U.S. Food and Drug Administration (FDA) guidelines. The processing removes the cellular components (i.e., epidermis, all viable dermal cells) that can lead to rejection and infection. ADM products from human skin tissue are regarded as minimally processed and not significantly changed in structure from the natural material; FDA classifies ADM products as banked human tissue and therefore, not requiring FDA approval.

- AlloDerm® (LifeCell Corp.) is an ADM (allograft) tissue-replacement product created from native human skin and processed so that the basement membrane and cellular matrix remain intact. Originally, AlloDerm® required refrigeration and rehydration before use. It is currently available in a ready-to-use product stored at room temperature. An injectable micronized form of AlloDerm® (Cymetra) is available.
- AlloMax™ Surgical Graft (Bard Davol) is an acellular non-cross-linked human dermis allograft. (AlloMax was previously marketed as NeoForm™.)
- AlloPatch® (Musculoskeletal Transplant Foundation) is an acellular human dermis allograft derived from the reticular layer of the dermis and marketed for wound care. This product is also marketed as FlexHD® for postmastectomy breast reconstruction.
- FlexHD® (Musculoskeletal Transplant Foundation) is an acellular hydrated reticular dermis allograft derived from donated human skin.
- DermACELL™ (LifeNet Health) is an allogeneic ADM processed with proprietary technologies MATRACELL® and PRESERVON®.
- DermaMatrix™ (Synthes) is a freeze-dried ADM derived from donated human skin tissue. DermaMatrix Acellular Dermis is processed by the Musculoskeletal Transplant Foundation.
• DermaPure™ (Tissue Regenix Wound Care) is a single-layer decellularized human dermal allograft for the treatment of acute and chronic wounds.

• Graftjacket® Regenerative Tissue Matrix (also called Graftjacket Skin Substitute; KCI) is an acellular regenerative tissue matrix that has been processed from human skin supplied from U.S. tissue banks. The allograft is minimally processed to remove the epidermal and dermal cells, while preserving dermal structure. Graftjacket Xpress® is an injectable product.

FDA product codes: FTM, OXF.

Xenogenic Products

• Keramatrix® (Keraplast Research) is an open-cell foam comprised of freeze-dried keratin that is derived from acellular animal protein. In 2009, it was cleared for marketing by FDA through the 510(k) process under the name of Keratec. The wound dressings are indicated in the management of the following types of dry, light, and moderately exuding partial and full-thickness wounds: pressure (stage I-IV) and venous stasis ulcers, ulcers caused by mixed vascular etiologies, diabetic ulcers, donor sites, and grafts.

• Helicoll (Encol) is an acellular collagen matrix derived from bovine dermis. In 2004, it was cleared for marketing by FDA through the 510(k) process for topical wound management that includes partial and full-thickness wounds, pressure ulcers, venous ulcers, chronic vascular ulcers, diabetic ulcers, trauma wounds (e.g., abrasions, lacerations, second-degree burns, skin tears), and surgical wounds including donor sites/grafts.

• Cytal™ (previously called MatriStem®) Wound Matrix, Multilayer Wound Matrix, Pelvic Floor Matrix, MicroMatrix, and Burn Matrix (all manufactured by ACell) are composed of porcine-derived urinary bladder matrix.

• Permacol™ (Covidien) is xenogeneic and composed of cross-linked porcine dermal collagen. Cross-linking improves the tensile strength and long-term durability, but decreases pliability.

• PriMatrix™ (TEI Biosciences) is a xenogeneic ADM processed from fetal bovine dermis. It was cleared for marketing by FDA through the 510(k) process for partial- and full-thickness wounds; diabetic, pressure, and venous stasis ulcers; surgical wounds; and tunneling, draining, and traumatic wounds. FDA product code: KGN.

• SurgiMend® PRS (TEI Biosciences) is a xenogeneic ADM processed from fetal bovine dermis.

• Strattice™ Reconstructive Tissue Matrix (LifeCell Corp.) is a xenogenic non-cross-linked porcine-derived ADM. There are pliable and firm versions, which are stored at room temperature and come fully hydrated.

• Oasis™ Wound Matrix (Cook Biotech) is a xenogeneic collagen scaffold derived from porcine small intestinal mucosa. In 2000, it was cleared for marketing by FDA through the 510(k) process for the management of partial- and full-thickness wounds, including pressure ulcers, venous ulcers, diabetic ulcers, chronic vascular ulcers, tunneled undermined wounds, surgical wounds, trauma wounds, and draining wounds. FDA Product code: KGN.

Living Cell Therapy

• Apligraf® (Organogenesis) is a bilayered living cell therapy composed of an epidermal layer of living human keratinocytes and a dermal layer of living human fibroblasts. Apligraf® is supplied as needed, in one size, with a shelf-life of 10 days. In 1998, it was approved by FDA for use in conjunction with compression therapy for the treatment of noninfected, partial- and full-thickness skin ulcers due to venous insufficiency and in 2001 for full-thickness neuropathic diabetic lower-extremity ulcers nonresponsive to standard wound therapy. FDA product code: FTM.
• Dermagraft® (Organogenesis) is composed of cryopreserved human-derived fibroblasts and collagen derived from newborn human foreskin and cultured on a bioabsorbable polyglactin mesh scaffold. Dermagraft has been approved by FDA for repair of diabetic foot ulcers. FDA product code: PFC.

• TheraSkin® (Soluble Systems) is a cryopreserved split-thickness human skin allograft composed of living fibroblasts and keratinocytes and an extracellular matrix in epidermal and dermal layers. TheraSkin® is derived from human skin allograft supplied by tissue banks compliant with the AATB and FDA guidelines. It is considered a minimally processed human cell, tissue, and cellular- and tissue-based product by FDA.

• Epicel® (Genzyme Biosurgery) is a cultured epithelial autograft and is FDA-approved under a humanitarian device exemption (HDE) for the treatment of deep dermal or full-thickness burns comprising a total body surface area of 30% or more. It may be used in conjunction with split-thickness autografts or alone in patients for whom split-thickness autografts may not be an option due to the severity and extent of their burns. FDA product code: OCE.

• OrCel™ (Forticell Bioscience; formerly Composite Cultured Skin) is an absorbable allogeneic bilayered cellular matrix, made of bovine collagen, in which human dermal cells have been cultured. It was approved by FDA pre-market approval for healing donor site wounds in burn victims and under an HDE for use in patients with recessive dystrophic epidermolysis bullosa undergoing hand reconstruction surgery to close and heal wounds created by the surgery, including those at donor sites. FDA product code: ODS.

Biosynthetic Products

• Biobrane®/Biobrane-L (Smith and Nephew) is a biosynthetic wound dressing constructed of a silicon film with a nylon fabric partially imbedded into the film. The fabric creates a complex 3-dimensional structure of trifilament thread, which chemically binds collagen. Blood/sera clot in the nylon matrix, adhering the dressing to the wound until epithelialization occurs. FDA product code: FRO.

• Integra® Dermal Regeneration Template (marketed as Omnigraft Dermal Regeneration Matrix; Integra LifeSciences) is a bovine, collagen/glycosaminoglycan dermal replacement covered by a silicone temporary epidermal substitute. It was approved by FDA for use in postexcisional treatment of life-threatening full-thickness or deep partial-thickness thermal injury where sufficient autograft is not available at the time of excision or not desirable because of the physiologic condition of the patient.

• Integra™ Matrix Wound Dressing and Integra™ meshed Bilayer Wound Matrix are substantially equivalent skin substitutes was cleared for marketing by FDA through the 510(k) process for other indications. Integra® Bilayer Wound Matrix (Integra LifeSciences) is designed to be used in conjunction with negative pressure wound therapy. The meshed bilayer provides a flexible wound covering and allows drainage of wound exudate. FDA product code: MDD.

• TransCyte™ (Advanced Tissue Sciences) consists of human dermal fibroblasts grown on nylon mesh, combined with a synthetic epidermal layer and was approved by FDA in 1997. TransCyte is intended as a temporary covering over burns until autografting is possible. It can also be used as a temporary covering for some burn wounds that heal without autografting.

Synthetic Products

• Suprathel® (PolyMedics Innovations) is a synthetic copolymer membrane fabricated from a tripolymer of polylactide, trimethylene carbonate, and s-caprolactone. It is used to provide temporary coverage of superficial dermal burns and wounds. Suprathel® is covered with gauze and a dressing that is left in place until the wound has healed.
Related Protocols

Amniotic Membrane and Amniotic Fluid

Autologous Platelet-Derived Growth Factors for Wound Healing and Other Non-Orthopedic Conditions

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

