Preauthorization is not required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With spinal neck or back pain</td>
<td>Interventions of interest are: • Dynamic spinal visualization</td>
<td>Comparators of interest are: • Conventional spinal imaging</td>
<td>Relevant outcomes include: • Test accuracy • Symptoms • Morbid events • Functional outcomes</td>
</tr>
</tbody>
</table>

Description

Dynamic spinal visualization is a general term addressing different imaging technologies that allow the simultaneous visualization of movement of internal body structures such as the spine (vertebrae) with external body movement. These technologies have been proposed for the evaluation of spinal disorders including neck and back pain.

Summary of Evidence

The evidence on dynamic spinal visualization in patients with back or neck pain includes comparisons of spine kinetics in patients with neck or back pain with healthy controls. Relevant outcomes are test accuracy, symptoms, morbid events, and functional outcomes. Techniques include digital motion x-rays, cineradiography/ videofluoroscopy, or dynamic magnetic resonance imaging of the spine. No literature was identified on the diagnostic accuracy of this technology in a relevant population of patients. No evidence was identified on the effect of this technology on symptoms or functional outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy

The use of dynamic spinal visualization is considered investigational.
Background

Most spinal visualization methods use x-rays to create images either on film, video monitor, or computer screen. Digital motion x-ray involves the use of either film x-ray or computer-based x-ray “snapshots” taken in sequence as a patient moves. Film x-rays are digitized into a computer for manipulation, while computer-based x-rays are automatically created in a digital format. Using a computer program, the digitized snapshots are then put in order and played on a video monitor, creating a moving image of the inside of the body. This moving image can then be evaluated by a physician alone or by using a computer that evaluates several aspects of the body’s structure, such as intervertebral flexion and extension, to determine the presence or absence of abnormalities.

Videofluoroscopy and cineradiography are different names for the same procedure, which uses fluoroscopy to create real-time video images of internal structures of the body. Unlike standard x-rays, which take a single picture at one point in time, fluoroscopy provides motion pictures of the body. The results of these techniques can be displayed on a video monitor as the procedure is being conducted, as well as recorded, to allow computer analysis or evaluation at a later time. Like digital motion x-ray, the results can be evaluated by a physician alone or with the assistance of computer analysis software.

Dynamic magnetic resonance imaging (MRI) is also being developed for imaging of the cervical spine. This technique uses an MRI-compatible stepless motorized positioning device (NeuroSwing, Fresenius/Siemens) and a real-time true fast imaging with steady-state precession sequence to provide passive kinematic imaging of the cervical spine. The quality of the images is lower than a typical MRI sequence, but is proposed to be adequate to observe changes in the alignment of vertebral bodies, the width of the spinal canal, and the spinal cord. Higher resolution imaging can be performed at the end positions of flexion and extension.

Regulatory Status

In 2012, the KineGraph VMA™ (Vertebral Motion Analyzer, Ortho Kinematics) was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. The system includes a Motion Normalizer™ for patient positioning, standard fluoroscopic imaging, and automated image recognition software. Processing of scans by Ortho Kinematics is charged separately. FDA product code: LLZ.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.