Protocol

Genetic Testing for Statin-Induced Myopathy

(20496)

<table>
<thead>
<tr>
<th>Medical Benefit</th>
<th>Effective Date: 01/01/14</th>
<th>Next Review Date: 09/18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preauthorization</td>
<td>No</td>
<td>Review Dates: 09/13, 09/14, 09/15, 09/16, 09/17</td>
</tr>
</tbody>
</table>

This protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• Who are taking statin drugs</td>
<td>• Genetic testing for SLCO1B1 variants</td>
<td>• Standard care without genetic testing for SLCO1B1 variants</td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Hospitalizations</td>
</tr>
</tbody>
</table>

Description

HMG-CoA reductase inhibitors, or statins, which are widely used to treat hypercholesterolemia, can cause muscle-related adverse effects. Serious myopathy (i.e., myositis, rhabdomyolysis) can also occur and may be associated with variants in the SLCO1B1 gene. Commercially available tests for the presence of SLCO1B1 variants are marketed for use in predicting the risk of myopathy for patients taking statins.

Summary of Evidence

For individuals who are taking statin drugs who receive genetic testing for SLCO1B1 variants, the evidence includes secondary analyses of randomized controlled trials (RCTs) and prospective observational studies. Relevant outcomes are test accuracy and validity, morbid events, and hospitalizations. No published information was found on the analytic validity of the marketed tests for detecting genetic variants associated with statin-induced myopathy. The available evidence from genome-wide association studies has suggested that SLCO1B1 polymorphisms are associated with risk of statin-associated myopathy. Observational studies and RCTs have been mixed in demonstrating an association between SLCO1B1 polymorphisms and statin-associated myopathy. No studies identified reported direct evidence on the clinical utility of genetic testing for statin myopathy. Statins are associated with a definitive decreased risk of cardiovascular events such as myocardial infarction, and this benefit of reduced cardiovascular events is likely to far outweigh the risk of myopathy, even in those at the highest risk of myopathy (i.e., two abnormal SLCO1B1 alleles). Therefore, there is a possibility of harm if the results of a positive test for statin-induced myopathy are used as part of the decision-making process for prescribing statins. The evidence is insufficient to determine the effects of the technology on health outcomes.
Policy

Genetic testing for the presence of variants in the SLCO1B1 gene for the purpose of identifying patients at risk of statin-induced myopathy is considered **not medically necessary**.

Policy Guidelines

Genetic Counseling

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Background

HMG-CoA reductase inhibitors, or statin drugs, are the primary pharmacologic treatment for hypercholesterolemia worldwide. In the United States, an estimated 38 million people took statins in 2008. Use of statins is associated with an approximately 30% reduction in cardiovascular events across a wide variety of populations.

Statin-Induced Myopathy

Statins are associated with a known risk of muscle-related symptoms, which are the most common adverse effects of statin drugs. Myopathy is a general term for muscle toxicity. Three categories of statin-induced myopathy have been defined by a joint committee of the American College of Cardiology, American Heart Association, and National Heart, Lung and Blood Institute:

- Statin-induced myalgia, defined as any muscle symptoms that occur without an elevation of serum creatinine kinase (CK);
- Statin-induced myositis, defined as muscle symptoms with an elevation of serum CK; and
- Statin-induced rhabdomyolysis, defined as markedly severe muscle symptoms with an elevation of CK greater than 10 times normal with an elevation in serum creatinine.

Statin-induced myalgia is the most common manifestation of myopathy; it is characterized by muscle pain, cramps, fatigue, and/or weakness. Myalgias without other clinical manifestations are not associated with clinically important adverse events and resolve when the statin is discontinued.

The incidence of myalgia varies widely. In clinical trials, these have been reported in 1.5% to 3.0% of patients; in most trials, the rate of myalgias in patients on statin therapy is not increased compared with placebo treatment. In observational studies, higher rates of 10% to 15% have been reported.

Myositis is much less common than myalgias, with an estimated rate of five per 100,000 patient-years and an estimated per-person incidence of 0.01%. In virtually all cases, myositis resolves with discontinuation of the statin. Rhabdomyolysis is the most severe clinical manifestation of statin-induced myopathy and can be life-threatening. The National Lipid Association estimated that rhabdomyolysis occurs at a rate of 1.6 per 100,000 patient-years, and the U.S. Food and Drug Administration (FDA) adverse events reporting system has estimated a rate of 0.7 per 100,000 patient-years. A 2006 systematic review combined results from 20 clinical trials, and estimated the rate of rhabdomyolysis to be 1.6 cases per 100,000 patient-years. Fatalities from statin-induced...
rhabdomyolysis can occur, but the mortality rate is not well-defined. FDA estimated that deaths from rhabdo-
myolysis occur at a rate of less than one death per million prescriptions.³

A number of clinical factors are associated with an increased risk of statin myopathy. Statin dose is probably the
strongest risk factor, with an estimated six-fold increase for patients on high-dose statins.⁷ Age is also a strong
risk factor. One study reported that patients older than 65 years of age required hospitalization for statin-
induced myositis at a rate that was four times higher than for younger patients.⁸ Some statins may be associated
with higher risk than others, and concomitant administration of certain drugs (e.g., gemfibrozil, amiodarone)
have been associated with higher rates of statin myopathy in clinical trials.⁷ Other factors that may be associated
with myopathy include female sex and intense physical exercise.⁷

The perceived risk of statin-induced myopathy may contribute to suboptimal statin use in patients with indica-
tions. Less than 50% of patients in the United States who would benefit from statins are currently taking them, a
substantial percentage of whom do not adhere to prescribed statin regimens.¹

Genetic Factors Associated With Statin-Induced Myopathy

A variety of genetic factors are associated with statin myopathy. The cytochrome p450 system in the liver is the
main pathway by which statins are metabolized. Numerous genetic variants in cytochrome p450 proteins affect
the pharmacokinetics of statin metabolism and serum statin levels.² Other genetic variants that affect statin
metabolism, efficacy, and susceptibility to adverse effects involve variations in the apolipoproteins such as apo
E, variations in the cholesterol ester transfer proteins, or variations in the coenzyme Q pathway.⁷

Variations in the SLCO1B1 gene also affect statin metabolism and are among the most well studied genetic
variants. These variants are the genetic markers for which there are commercially available tests. This gene
codes for a transporter protein that is part of the solute carrier organic ion transporter system, which mediates
the influx and metabolism of statins in the liver.² Single-nucleotide polymorphisms (SNPs) in this gene are
associated with variations in the risk of statin-induced myopathy. The T/T allele is the wild-type and associated
with the lowest risk of myopathy. The C/C allele is associated with the highest risk of myopathy, and the T/C
allele with an intermediate risk. The T allele has a prevalence of approximately 0.87 and the C allele has a
prevalence of approximately 0.13.⁴

Other genes have also been studied, including ABCB1, which encodes ATP-binding cassette (ABC) transporters
subfamily B member 1 (ABCB1/P-glycoprotein 1), ABCG2, which encodes ABC transporters subfamily G member
2 (ABCG2/breast cancer resistance protein), and the coenzyme Q2 (COQ2) homolog gene. Other studies have
evaluated the association between polymorphisms in the GATM gene, which encodes a glycine amidinotrans-
ferase that is the rate-limited enzyme in creatine biosynthesis, and statin-induced myopathy, although this
association has not been consistently replicated.⁹

Commercially Available SLCO1B1 Molecular Diagnostic Tests

Several commercial and academic labs offer genetic testing for statin-induced myopathy (SLCO1B1) variants. For
example, Boston Heart Diagnostics™ markets a test for the (SLCO1B1) genotype. This test uses real-time poly-
merase chain reaction (PCR) to identify patients with the T/T, T/C, or C/C genotype.¹⁰

ARUP Laboratories markets a test for SLCO1B1 genetic variants that uses real-time PCR with high-resolution
melting analysis to identify the rs4149056C variant in the SLCO1B1 gene.¹¹

Some labs offer panel tests for drug metabolism, which may use Sanger sequencing or next-generation
sequencing, that include the SLCO1B1 gene. For example, ApolloGen (Irvine, CA) markets a pharmacogenomics
panel, the iGene Pharmacogenomics Panel, that sequences the SLCO1B1 gene.¹²
Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). The Boston Heart Statin Induced Myopathy (SLCO1B1) Genotype test and ARUP Laboratories Statin Sensitivity SLCO1B1 are available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

Related Protocols

Cochlear Implant
Preimplantation Genetic Testing

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

