Hematopoietic Stem Cell Transplantation for Waldenström Macroglobulinemia

Medical Benefit

Effective Date: 04/01/13
Next Review Date: 07/17

Preauthorization Yes
Review Dates: 04/07, 05/08, 01/10, 01/11, 09/11, 09/12, 09/13, 07/14, 07/15, 07/16

Preauthorization is required and must be obtained through Case Management.

The following Protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Description

Hematopoietic stem cell transplantation (HSCT) refers to a procedure in which hematopoietic stem cells are infused to restore bone marrow function in cancer patients who receive bone-marrow-toxic doses of cytotoxic drugs with or without whole body radiotherapy. Hematopoietic stem cells may be obtained from the transplant recipient (autologous HSCT) or from a donor (allogeneic HSCT). They can be harvested from bone marrow, peripheral blood, or umbilical cord blood shortly after delivery of neonates. Although cord blood is an allogeneic source, the stem cells in it are antigenically “naive” and thus are associated with a lower incidence of rejection or graft-versus-host disease (GVHD). Cord blood is discussed in greater detail in the Placental and Umbilical Cord Blood as a Source of Stem Cells Protocol.

Summary of Evidence

Based on the literature and clinical input, autologous hematopoietic stem cell transplantation (HSCT) may be considered medically necessary as salvage therapy for chemosensitive Waldenström macroglobulinemia (WM). Allogeneic HSCT for WM is considered investigational.

Policy

Autologous hematopoietic stem cell transplantation may be considered **medically necessary** as salvage therapy of chemosensitive Waldenstrom macroglobulinemia.

Allogeneic hematopoietic stem cell transplantation is considered **investigational** to treat Waldenstrom macroglobulinemia.

Policy Guidelines

Individual transplant facilities may have their own additional requirements or protocols that must be met in order for the patient to be eligible for a transplant at their facility.
Medicare Advantage

If a transplant is needed, we arrange to have the transplant center review and decide whether the patient is an appropriate candidate for the transplant.

Background

Immunologic compatibility between infused hematopoietic stem cells and the recipient is not an issue in autologous HSCT. However, immunologic compatibility between donor and patient is a critical factor for achieving a good outcome of allogeneic HSCT. Compatibility is established by typing HLA using cellular, serologic, or molecular techniques. HLA refers to the tissue type expressed at the HLA A, B, and DR loci on each arm of chromosome 6. Depending on the disease being treated, an acceptable donor will match the patient at all or most of the HLA loci.

Conventional Preparative Conditioning for HSCT

The conventional ("classical") practice of allogeneic HSCT involves administration of cytotoxic agents (e.g., cyclophosphamide, busulfan) with or without total body irradiation at doses sufficient to destroy endogenous hematopoietic capability in the recipient. The beneficial treatment effect in this procedure is due to a combination of initial eradication of malignant cells and subsequent graft-versus-malignancy (GVM) effect that develops after engraftment of allogeneic stem cells within patients’ bone marrow space. While the slower GVM effect is considered to be the potentially curative component, it may be overwhelmed by extant disease without the use of pretransplant conditioning. However, intense conditioning regimens are limited to patients who are sufficiently fit medically to tolerate substantial adverse effects that include pre-engraftment opportunistic infections secondary to loss of endogenous bone marrow function and organ damage and failure caused by the cytotoxic drugs. Furthermore, in any allogeneic HSCT, immune suppressant drugs are required to minimize graft rejection and GVHD, which also increases susceptibility of the patient to opportunistic infections.

The success of autologous HSCT is predicated on the ability of cytotoxic chemotherapy with or without radiation to eradicate cancerous cells from the blood and bone marrow. This permits subsequent engraftment and repopulation of bone marrow space with presumably normal hematopoietic stem cells obtained from the patient before undergoing bone marrow ablation. As a consequence, autologous HSCT is typically performed as consolidation therapy when the patient’s disease is in complete remission. Patients who undergo autologous HSCT are susceptible to chemotherapy-related toxicities and opportunistic infections prior to engraftment, but not GVHD.

Reduced-Intensity Conditioning for Allogeneic HSCT

Reduced-intensity conditioning (RIC) refers to the pretransplant use of lower doses or less intense regimens of cytotoxic drugs or radiation than are used in conventional full-dose myeloablative conditioning treatments. The goal of RIC is to reduce disease burden but also to minimize as much as possible associated treatment-related morbidity and nonrelapse mortality (NRM) in the period during which the beneficial GVM effect of allogeneic transplantation develops. Although the definition of RIC remains arbitrary, with numerous versions employed, all seek to balance the competing effects of NRM and relapse due to residual disease. RIC regimens can be viewed as a continuum in effects, from nearly totally myeloablative to minimally myeloablative with lymphoablation, with intensity tailored to specific diseases and patient condition. Patients who undergo RIC with allogeneic HSCT initially demonstrate donor cell engraftment and bone marrow mixed chimerism. Most will subsequently convert to full-donor chimerism, which may be supplemented with donor lymphocyte infusions to eradicate residual malignant cells. For the purposes of this Protocol, the term reduced-intensity conditioning will refer to all conditioning regimens intended to be nonmyeloablative, as opposed to fully myeloablative (conventional) regimens.
Waldenström Macroglobulinemia

WM is a B-cell malignancy that accounts for 1% to 2% of hematologic malignancies, with an estimated 1500 new cases annually in the United States. The median age of WM patients at presentation is 63 to 68 years, with men comprising 55% to 70% of cases. Median survival of WM ranges from five to 10 years, with age, hemoglobin concentration, serum albumin level, and β₂-microglobulin level as predictors of outcome.

The Revised European American Lymphoma (REAL) and World Health Organization classification, and a consensus group formed at the Second International Workshop on WM recognize WM primarily as a lymphoplasmacytic lymphoma with an associated immunoglobulin M (IgM) monoclonal gammopathy. The definition also requires the presence of a characteristic pattern of bone marrow infiltration with small lymphocytes demonstrating plasmacytic differentiation with variable cell surface antigen expression. The Second International Workshop indicated no minimum serum concentration of IgM is necessary for a diagnosis of WM.

Treatment of WM is indicated only in symptomatic patients and should not be initiated solely on the basis of serum IgM concentration. Clinical and laboratory findings that indicate the need for therapy of diagnosed WM include hemoglobin concentration less than 100 g/L; platelet count less than 100×10⁹/L; significant adenopathy or organomegaly; symptomatic Ig-related hyperviscosity (> 50 g/L); severe neuropathy; amyloidosis; cryoglobulinemia; cold-agglutinin disease; or evidence of disease transformation. Primary chemotherapeutic options have included alkylating agents (chlorambucil, cyclophosphamide, melphalan), purine analogs (cladribine, fludarabine), and monoclonal antibody agents (rituximab), alone or in various combinations. Plasma exchange is indicated for acute treatment of symptomatic hyperviscosity.

Related Protocols

Hematopoietic Stem Cell Transplantation for Non-Hodgkin Lymphomas

Placental and Umbilical Cord Blood as a Source of Stem Cells

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

