Injectable Bulking Agents for the Treatment of Urinary and Fecal Incontinence

Medical Benefit
Effective Date: 07/01/15
Next Review Date: 05/18
Preauthorization: No
Review Dates: 01/08, 11/08, 09/09, 09/10, 09/11, 09/12, 05/13, 05/14, 05/15, 05/16, 05/17

Preauthorization is not required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions of interest are:</th>
<th>Comparators of interest are:</th>
<th>Relevant outcomes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>• Injectable bulking agents</td>
<td>• Conservative therapy</td>
<td>• Symptoms</td>
</tr>
<tr>
<td>• With stress urinary incontinence</td>
<td></td>
<td>• Surgery</td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td>• With fecal incontinence</td>
<td></td>
<td>• Sacral nerve stimulation</td>
<td>• Quality of life</td>
</tr>
<tr>
<td>• Injectable bulking agents</td>
<td></td>
<td>• Surgery</td>
<td>• Treatment-related morbidity</td>
</tr>
</tbody>
</table>

Description

Bulking agents are injectable substances used to increase tissue bulk. They can be injected periurethrally to treat urinary incontinence and perianally to treat fecal incontinence. The U.S. Food and Drug Administration (FDA) has approved several bulking agent products for treating urinary incontinence and one for treating fecal incontinence.

Summary of Evidence

For individuals who have stress urinary incontinence who receive injectable bulking agents, the evidence includes randomized controlled trials (RCTs) and systematic reviews of RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. Studies have shown that cross-linked collagen improves the net health outcome (i.e., it is effective in some patients who failed conservative treatment with fewer adverse events than surgery), although this product is no longer commercially available. There is evidence that FDA-approved carbon-coated spheres, calcium hydroxylapatite, and polydimethylsiloxane have efficacy for treating incontinence and produce outcomes and have a safety profile similar to cross-linked collagen. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome.
For individuals who have fecal incontinence who receive injectable bulking agents, the evidence includes RCTs and systematic reviews of RCTs. Relevant outcomes are symptoms, functional outcomes, quality of life, and treatment-related morbidity. A comparative effectiveness review from the Agency for Healthcare Research and Quality evaluated two RCTs with the FDA-approved product NASHA Dx (Solesta) and two RCTs with Durasphere (off-label in the United States). One RCT comparing NASHA Dx with sham found that NASHA Dx improved some outcome measures but not others. The other RCT did not find a significant difference in efficacy between NASHA Dx and biofeedback. Two additional RCTs evaluating Durasphere found only short-term improvements in fecal incontinence severity. Controlled trials with longer follow-up are important to determine the durability of any treatment effect. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy
The use of carbon-coated spheres, calcium hydroxylapatite, or polydimethylsiloxane may be considered medically necessary to treat stress urinary incontinence in men and women who have failed appropriate conservative therapy.

The use of autologous cellular therapy (e.g., myoblasts, fibroblasts, muscle-derived stem cells, or adipose-derived stem cells), autologous fat, and autologous ear chondrocytes to treat stress urinary incontinence is considered investigational.

The use of any other periurethral bulking agent, including, but not limited to Teflon®, to treat stress urinary incontinence is considered investigational.

The use of periurethral bulking agents to treat urge urinary incontinence is considered investigational.

The use of perianal bulking agents to treat fecal incontinence is considered investigational.

Policy Guidelines
Patients should have had inadequate response to conservative therapy or therapies; in general, these treatments should have been used for at least three months. Conservative therapy for stress incontinence includes pelvic floor muscle exercises and behavioral changes, such as fluid management and moderation of physical activities that provoke incontinence. Additional options include intravaginal estrogen therapy, use of a pessary, and treatment of other underlying causes of incontinence in patients amenable to these treatments.

Medicare Advantage
In addition to the above criteria, this also applies:

- Collagen implant, and the procedure to inject it, is medically necessary for the following types of patients with stress urinary incontinence due to confirmed intrinsic sphincter deficiency (ISD):
 - Male or female patients with congenital sphincter weakness secondary to conditions such as myelomeningocele or epispadias;
 - Male or female patients with acquired sphincter weakness secondary to spinal cord lesions;
 - Male patients following trauma, including prostatectomy and/or radiation; and
 - Female patients without urethral hypermobility and with abdominal leak point pressures of 100 cm H2O or less.
Patients whose incontinence does not improve with five injection procedures (five separate treatment sessions) are considered treatment failures, and no further treatment of urinary incontinence by collagen implant is considered medically necessary.

Patients who have a reoccurrence of incontinence following successful treatment with collagen implants in the past (e.g., six to 12 months previously) may benefit from additional treatment sessions which may be considered medically necessary.

Medicare Advantage Policy Guidelines

Prior to collagen implant therapy, a skin test for collagen sensitivity must be administered and evaluated over a four-week period.

Background

Injectable bulking agents are space-filling substances used to increase tissue bulk. When used to treat stress urinary incontinence (SUI), bulking agents are injected periurethrally to increase tissue bulk and thereby increase resistance to the outflow of urine. The bulking agent is injected into the periurethral tissue as a liquid that solidifies into a spongy material to bulk the urethral wall. Bulking agents may be injected over a course of several treatments until the desired effect is achieved. Periurethral bulking agents have been widely used for incontinence in women. Men have also been treated, typically those with postprostatectomy incontinence.

After the success of periurethral bulking agents for treating SUI, bulking agents injected into the anal canal have been proposed to treat fecal incontinence. In particular, bulking agents are a potential treatment for passive fecal incontinence associated with internal anal sphincter dysfunction. The bulking agent is injected into the submucosa of the anal canal to increase tissue bulk in the area, which narrows the opening of the anus. Current treatment options for fecal incontinence include conservative measures (e.g., dietary changes, pharmacotherapy, pelvic floor muscle exercises), sacral nerve stimulation, and surgical interventions to correct an underlying problem.

Key factors in determining the optimal product are biocompatibility, durability, and absence of migration. A number of periurethral bulking agents to treat urinary incontinence have been cleared for marketing by the FDA; however, products developed to date have not necessarily met all criteria of the ideal bulking agents. The first FDA-approved product was cross-linked collagen (e.g., Contigen). The agent was found to be absorbed over time and symptoms could recur, requiring additional injections. Contigen production was discontinued in 2011. Other periurethral bulking agents cleared by FDA for urinary incontinence include carbon-coated beads (e.g., Durasphere), spherical particles of calcium hydroxylapatite (CaHA) in a gel carrier (Coaptite), polymethylsiloxane (silicone, Macroplastique), and ethylene vinyl alcohol copolymer implants (e.g., Tegress, formerly Uryx). Tegress was voluntarily removed from the market due to safety concerns.

Several agents identical to or similar to those used for urinary incontinence (e.g., Durasphere, silicone biomaterial) have been studied for the treatment of fecal incontinence. To date, only one bulking agent has been approved by FDA for fecal incontinence. This formulation is a non-animal-stabilized hyaluronic acid/dextranomer in stabilized hyaluronic acid (NASHA Dx) and is marketed by Q-Med as Solesta. A hyaluronic acid/dextranomer formulation (Deflux™) from the same company has been commercially available for a number of years for the treatment of vesicoureteral reflux in children (please see the Periureteral Bulking Agents as a Treatment of Vesicoureteral Reflux Protocol for information on the treatment of vesicoureteral reflux with bulking agents).
Autologous fat and autologous ear chondrocytes have also been used as periurethral bulking agents; autologous substances do not require FDA approval. Polytetrafluoroethylene (Teflon) has been investigated as an implant material but does not have FDA approval. A more recently explored alternative is cellular therapy with myoblasts, fibroblasts, or stem cells (muscle-derived or adipose-derived). In addition to their use as periurethral bulking agents, it is hypothesized that transplanted stem cells would undergo self-renewal and multipotent differentiation, which could result in regeneration of the sphincter and its neural connections.

Regulatory Status

Several periurethral bulking agents have been approved by the FDA through the premarket approval process for the treatment of stress urinary incontinence due to intrinsic sphincter deficiency; other than Contigen®, approval is only for use in adult women. Products include:

- In 1993, Contigen® (Allergan), a cross-linked collagen, was approved. A supplemental approval in 2009 limited the device's indication to treatment of urinary incontinence due to intrinsic sphincter deficiency in patients (men or women) who have shown no improvement in incontinence for at least 12 months. Allergan ceased production in 2011; no reason for discontinuation was provided publicly.
- In 1999, Durasphere® (Advanced UroScience), a pyrolytic carbon-coated zirconium oxide sphere, was approved.
- In 2004, Uryx® (CR Bard), a vinyl alcohol copolymer implant, was approved. In 2005, approval was given to market the device under the name Tegress®. In 2007, Tegress® was voluntarily removed from the market due to safety concerns.
- In 2005, Coaptite® (Merz Aesthetics, previously BioForm Medical), spherical particles of calcium hydroxylapatite, suspended in a gel carrier, was approved.
- In 2006, Macroplastique® (Uroplasty), polydimethylsiloxane, was approved.

In 2011, NASHA Dx, marketed as Solesta® (Q-Med), was approved by FDA through the premarket approval process as a bulking agent to treat fecal incontinence in patients 18 years and older who have failed conservative therapy. FDA product code: LNM.

Related Protocols

- Biofeedback as a Treatment of Fecal Incontinence or Constipation
- Biofeedback as a Treatment of Urinary Incontinence in Adults
- Pelvic Floor Stimulation as a Treatment of Urinary and Fecal Incontinence
- Percutaneous Tibial Nerve Stimulation
- Periureteral Bulking Agents as a Treatment of Vesicoureteral Reflux
- Sacral Nerve Neuromodulation/Stimulation
- Transanal Radiofrequency Treatment of Fecal Incontinence

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are
considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

38. National Government Services, Inc. (Primary Geographic Jurisdiction - Illinois, New York - Entire State, Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, Vermont, Wisconsin, Minnesota) Local Coverage Determination (LCD): Category III CPT® Codes (L33392), Revision Effective Date for services performed on or after 01/01/2017.